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This paper discusses regression analysis of case 𝐾 interval-censored failure time data, a general 
type of failure time data, in the presence of informative censoring with the focus on simultaneous 
variable selection and estimation. Although many authors have considered the challenging 
variable selection problem for interval-censored data, most of the existing methods assume 
independent or non-informative censoring. More importantly, the existing methods that allow 
for informative censoring are frailty model-based approaches and cannot directly assess the 
degree of informative censoring among other shortcomings. To address these, we propose a 
conditional approach and develop a penalized sieve maximum likelihood procedure for the 
simultaneous variable selection and estimation of covariate effects. Furthermore, we establish 
the oracle property of the proposed method and illustrate the appropriateness and usefulness of 
the approach using a simulation study. Finally we apply the proposed method to a set of real data 
on Alzheimer’s disease and provide some new insights.

1. Introduction

This paper discusses regression analysis of case 𝐾 interval-censored failure time data, a general type of failure time data, in the 
presence of informative censoring with the focus on simultaneous variable selection and estimation. Interval-censored data occur 
when the failure time of interest is known only to belong to an interval rather than being observed exactly and their analysis has 
recently attracted a great deal of attention (Sun, 2006). It is easy to see that such data can occur in many situations or fields and 
among others, one area that usually yields interval-censored data is periodic follow-up studies such as clinical trials. By informative 
censoring, we usually mean that the failure time of interest and the censoring mechanism or observation process may be correlated 
or the latter carries some information about the former (Sun, 2006).

One specific example of interval-censored failure time data that motivated this study is given by the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI), a longitudinal follow-up study that started in 2004 and was designed to develop clinical, imaging, 
genetic, and biochemical biomarkers for the early detection and tracking of the Alzheimer’s disease (AD). Due to the periodic follow-

up nature, only interval-censored data are available on many variables such as the AD conversion time. Among other, one major goal 
of the initiative is to determine or identify the relevant biomarkers that can be used to predict the AD conversion. More details on 
the study will be given below and more examples of interval-censored data can be found in Sun (2006).
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A great deal of literature has been established for variable selection under various contexts, and in particular, many methods 
have been proposed for right-censored failure time data situations (Fan and Li, 2002; Shi et al., 2014; Tibshirani, 1997; Zhang and 
Lu, 2007). Among the commonly used methods, the penalized estimation procedure, which optimizes an objective function with a 
penalty function, has recently become increasingly popular and in particular, many different penalty functions have been proposed. 
They include the 𝐿1 penalty, the least absolute shrinkage and selection operator (LASSO) penalty (Tibshirani, 1996), the smoothly 
clipped absolute deviation (SCAD) penalty (Fan and Li, 2001), the adaptive LASSO (ALASSO) penalty (Zou, 2006), the smooth 
integration of counting and absolute deviation (SICA) penalty (Lv and Fan, 2009), the seamless-L0 (SELO) penalty (Dicker et al., 
2013), and the broken adaptive ridge (BAR) penalty (Liu and Li, 2016).

Some methods have been proposed for variable selection when one faces interval-censored failure time data (Du et al., 2021; 
Li et al., 2020; Wu and Cook, 2015; Zhao et al., 2020). For example, Wu and Cook (2015) and Zhao et al. (2020) proposed some 
penalized variable selection procedures under the weakly parametric proportional hazards (PH) model and the standard PH model, 
respectively. In particular, the latter provided a BAR penalty-based method and established the oracle property of the approach. In 
addition, Li et al. (2020) discussed the same problem under a class of semiparametric transformation models and Du et al. (2021)

provided a unified approach under the PH model. However, all of methods above except Du et al. (2021) assume independent or 
non-informative censoring and it is well-known that in the presence of informative censoring, the analysis that ignores it would 
lead to biased estimation. More comments on the approach given in Du et al. (2021) are given below. Also it is worth noting that 
the variable selection with interval-censored data is much more challenging than with right-censored data under the PH model 
both numerically and theoretically. One main reason is that with the latter, a simple partial likelihood function that involves only 
regression parameters is available and usually used as the objective function. In contrast, with the former, the same is not true and 
one has to work with a much more complicated objective function as seen below.

Many authors have discussed regression analysis of interval-censored failure time data with informative censoring and this is 
especially the case for case I or current status data, a special case of interval-censored data where each subject is observed only 
once (Du et al., 2019; Du and Yu, 2023; Du et al., 2022; Li et al., 2017a, 2017b; Ma et al., 2015; Sun, 2006; Wang et al., 2016; 
Wang et al., 2018, 2020). For the situation, most of the existing methods such as that proposed in Du et al. (2021) are frailty-based 
procedures in which some frailty or latent variables are used to characterize the relationship between the failure time of interest 
and the observation process. A drawback of this approach is that some restrictions or distribution assumptions, which cannot usually 
be verified, have to be used. Another common drawback of the existing methods is that they need to assume that the observation 
process is a Poisson process. More importantly, such an approach cannot provide a direct estimation about the degree of informative 
censoring. To address these, we will propose a conditional approach that can overcome these shortcomings with the focus on 
simultaneous variable selection and estimation.

More specifically, we will present a conditional PH model and develop a penalized sieve maximum likelihood approach. In the 
method, 𝐵-splines functions will be used and the oracle property of the proposed estimators will be established. The idea behind 
the proposed model is similar to that discussed in Sun et al. (2005, 2007) for the analysis of longitudinal data with dependent 
observation processes, and the proposed method can also apply for joint analysis of interval-censored data and panel count data 
with the focus on the failure event (Xu et al., 2018). An example of the latter situations is given by the analysis of a disease onset 
and the hospitalization record of a patient with the disease onset being the focus. For the case, it is apparent that the record or the 
hospitalizations process may contain relevant information about the disease onset and thus a joint analysis needs to be conducted. 
More discussion on this will be given below.

In the following, we will first present the proposed conditional PH model along with some notation and assumptions that will be 
used throughout the paper in Section 2. Then in Section 3, we will propose a penalized sieve maximum likelihood procedure and 
establish the oracle property of the resulting estimators. For the implementation of the proposed method, a cyclic coordinate-wise 
optimization algorithm will be developed in Section 4. In Section 5, we will conduct a simulation study to assess the performance of 
the proposed approach and it indicates that the method works well for practical situations. In Section 6, we will apply the proposed 
methodology to the AD data discussed above and give some concluding remarks in Section 7.

2. A conditional PH model

Consider a failure time study that involves 𝑛 independent subjects with 𝑇𝑖 denoting the failure time of interest. Sup-

pose that for subject 𝑖, there exists a 𝑝 -dimensional vector of covariates denoted by 𝑍𝑖 and the subject is observed 
only at a sequence of time points denoted by 𝑠𝑖,1 < 𝑠𝑖,2 < ⋯ < 𝑠𝑖,𝑚𝑖

, where 𝑚𝑖 denotes the number of observations on 
subject 𝑖. That is, on the 𝑇𝑖 ’s, only case 𝐾 interval-censored data are available (Sun, 2006) and given by 𝑂 = { 𝑂𝑖 ={
𝑚𝑖,𝑍𝑖, 𝑠𝑖,𝑗 , 𝛿𝑖𝑘 = 𝐼

(
𝑇𝑖 ∈

(
𝑠𝑖,𝑘−1, 𝑠𝑖,𝑘

])
; 𝑗 = 1,2,… ,𝑚𝑖, 𝑘 = 1,2,… ,𝑚𝑖 + 1

}
; 𝑖 = 1, ..., 𝑛 }, where 𝑠𝑖,0 = 0 and 𝑠𝑖,𝑚𝑖+1 = ∞. Also suppose 

that one is mainly interested in identifying relevant or significant covariates and estimate their effects on the 𝑇𝑖 ’s.
Define 𝑁𝑖(𝑡) =

∑𝑚𝑖
𝑗=1 𝐼(𝑠𝑖,𝑗 ≤ 𝑡), the observation process, and assume that 𝑇𝑖 and 𝑁𝑖(𝑡) are correlated. That is, we have informative 

interval censoring. To describe the covariate effects on 𝑇𝑖 as well as the possible correlation between 𝑇𝑖 and 𝑁𝑖(𝑡), define 𝑖𝑡 ={
𝑁𝑖(𝑠),0 ≤ 𝑠 ≤ 𝑡

}
, the history about the process 𝑁𝑖 up to time 𝑡. In the following, we will assume that given 𝑍𝑖 and 𝑖𝑡, the hazard 

function of 𝑇𝑖 has the form( ) { ( )} { }

2

𝜆 𝑡 ∣𝑍𝑖,𝑖𝑡 = 𝜆0(𝑡) exp 𝜷∗𝑇 𝑍𝑖 + 𝛼𝑇𝐻 𝑖𝑡 = 𝜆0(𝑡) exp 𝜷𝑇𝑋𝑖(𝑡) . (1)



Computational Statistics and Data Analysis 198 (2024) 107991M. Du and X. Zhao

In the above, 𝜆0(𝑡) denotes an unknown baseline hazard function, 𝜷∗ = (𝛽1, ..., 𝛽𝑝)𝑇 is a 𝑝-dimensional vector of regression parameters, 
𝛼 is a 𝑝1-dimensional vector of regression coefficients, 𝜷 = (𝛼𝑇 , 𝛽1, … , 𝛽𝑝)𝑇 , 𝐻(⋅) is a vector of known functions of the counting 
process 𝑁𝑖(𝑡) up to time 𝑡, and 𝑋𝑖(𝑡) = (𝐻

(𝑖𝑡)𝑇 , 𝑍𝑇
𝑖
)𝑇 .

Model (1) is motivated by similar models on the longitudinal process discussed in Sun et al. (2005, 2007) for regression analysis 
of longitudinal data with a dependent observation process. It specifies that the failure time 𝑇𝑖 may be related to the censoring or 
observation process 𝑁𝑖(𝑡) through the function 𝐻 , which can be chosen in various forms. A natural and simple choice for 𝐻 may be 
𝐻
(𝑖𝑡) =𝑁𝑖(𝑡−), meaning that all information about 𝑇𝑖 in 𝑖𝑡 is given by the total number of observations. An alternative is that 𝑇𝑖

depends on 𝑖𝑡 only through a recent number of observations, say, in 𝑢 time units, and this corresponds to 𝐻
(𝑖𝑡) =𝑁𝑖(𝑡−) −𝑁𝑖(𝑡 −𝑢). 

One could define 𝐻 as a vector given by the foregoing two choices if both the total and recent numbers of observations may contain 
information about 𝑇𝑖. In the following, we will leave the distribution of 𝑁𝑖(𝑡) arbitrary but assume that it does not contain any 
unknown parameters in model (1).

3. Simultaneous variable selection and estimation

Now we consider the variable or covariate selection and for this, we will develop a penalized procedure with the use of the 
likelihood function as the objective function. Under the assumptions above, it is easy to see that the likelihood function of the 
observation data is proportional to

𝐿𝑛

(
𝛼, 𝛽∗, 𝜆0

)
=

𝑛∏
𝑖=1

𝑚𝑖+1∏
𝑘=1

⎡⎢⎢⎢⎣exp
⎧⎪⎨⎪⎩−

𝑠𝑖,𝑘−1

∫
0

𝜆0(𝑡) exp
{
𝜷∗𝑇 𝑍𝑖 + 𝜶𝑇𝐻

(𝑖𝑡)}𝑑𝑡⎫⎪⎬⎪⎭− exp
⎧⎪⎨⎪⎩−

𝑠𝑖,𝑘

∫
0

𝜆0(𝑡) exp
{
𝜷∗𝑇 𝑍𝑖 + 𝜶𝑇𝐻

(𝑖𝑡)}𝑑𝑡⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
𝛿𝑖𝑘

.

(2)

If the estimation of unknown parameters was of main interest, it would be natural to maximize the likelihood function above. On the 
other hand, it is easy to see that the maximization would be difficult since it involves the unknown function 𝜆0(𝑡). To deal with this, 
we propose first to approximate 𝜆0(𝑡) by using B-splines functions.

Let 𝜏 denote the longest follow-up time and for the closed interval [0, 𝜏], let  =
{
𝑡𝑖
}𝑚𝑛+2𝑙
1 with

0 = 𝑡1 =⋯ = 𝑡𝑙 < 𝑡𝑙+1 <⋯ < 𝑡𝑚𝑛+𝑙 < 𝑡𝑚𝑛+𝑙+1 =⋯ = 𝑡𝑚𝑛+2𝑙 = 𝜏

being a sequence of knots that partition [0, 𝜏] into 𝑚𝑛 + 1 subintervals and 𝑚𝑛 = 𝑂 (𝑛𝑣), for 0 < 𝑣 < 1∕2. Also let Ψ𝑙, be the class 
linearly spanned by the B-splines basis functions 

{
𝐵𝑗,1 ≤ 𝑗 ≤ 𝑞𝑛

(
𝑞𝑛 =𝑚𝑛 + 𝑙

)}
with order 𝑙 and knots . That is,

Ψ𝑙, =

{
𝑞𝑛∑
𝑗=1

𝛾𝑗𝐵𝑗 ∶ 𝛾𝑗 ∈ℝ, 𝑗 = 1,⋯ , 𝑞𝑛

}
.

We now define a subclass of Ψ𝑙, as Φ𝑙, =
{∑𝑞𝑛

𝑗=1 𝛾𝑗𝐵𝑗

}
with 𝛾𝑗 ≥ 0. According to the variation-diminishing properties of B-splines 

(Schumaker, 1981), Φ𝑙, is a class of nondecreasing splines on [0, 𝜏]. Then we can approximate the smooth nonnegative function 
𝜆0(𝑡) by 

∑𝑞𝑛
𝑗=1 𝛾𝑗𝐵𝑗 (𝑡) with the constraints 𝛾𝑗 ≥ 0, 𝑗 = 1, ⋯ , 𝑞𝑛. It follows that for estimation of (𝛼, 𝛽∗, 𝜆0), it would be natural to 

consider the log-likelihood function

𝑙𝑛
(
𝜶,𝜷∗,𝜸

)
=

𝑛∑
𝑖=1

𝑚𝑖+1∑
𝑘=1

𝛿𝑖𝑘 log
⎡⎢⎢⎢⎣exp

⎧⎪⎨⎪⎩−
𝑠𝑖,𝑘−1

∫
0

𝜸𝑇 𝐵(𝑡) exp
{
𝜷∗𝑇 𝑍𝑖 + 𝜶𝑇𝐻

(𝑖𝑡)}𝑑𝑡⎫⎪⎬⎪⎭
−exp

⎧⎪⎨⎪⎩−
𝑠𝑖,𝑘

∫
0

𝜸𝑇 𝐵(𝑡) exp
{
𝜷∗𝑇 𝑍𝑖 + 𝜶𝑇𝐻

(𝑖𝑡)}𝑑𝑡⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ ,

where 𝜸 =
(
𝛾1,⋯ , 𝛾𝑞𝑛

)𝑇
and 𝐵(𝑡) =

(
𝐵1(𝑡),⋯ ,𝐵𝑞𝑛

(𝑡)
)𝑇

. Let 
(
𝑈𝑖,𝑉𝑖

]
denote the smallest interval that brackets 𝑇𝑖. Then the likelihood 

function above can be rewritten as

𝑙𝑛
(
𝜶,𝜷∗,𝜸

)
=

𝑛∑
𝑖=1

log
⎡⎢⎢⎢⎣exp

⎧⎪⎨⎪⎩−
𝑈𝑖

∫
0

𝜸𝑇 𝐵(𝑡) exp
{
𝜷∗𝑇 𝑍𝑖 + 𝜶𝑇𝐻

(𝑖𝑡)}𝑑𝑡⎫⎪⎬⎪⎭− exp
⎧⎪⎨⎪⎩−

𝑉𝑖

∫
0

𝜸𝑇 𝐵(𝑡) exp
{
𝜷∗𝑇 𝑍𝑖 + 𝜶𝑇𝐻

(𝑖𝑡)}𝑑𝑡⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ .

For simultaneous variable selection and estimation, we propose to maximize the penalized log likelihood function

𝓁 (𝜶,𝜷∗,𝜸) = 𝑙 (𝜶,𝜷∗,𝜸 ∣𝑋 ) −
𝑝∑
𝑃

(||𝛽 ||) ,

3

𝑝 𝑛 𝑖

𝑗=1
𝜆 | 𝑗 |
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where 𝑃𝜆
(|||𝛽𝑗 |||) denotes a penalty function characterized by the tuning parameter 𝜆. In the following, we will focus on the BAR 

penalty function (Dai et al., 2018; Zhao et al., 2020) although the proposed method is valid with the use of other penalty functions 
too. Some comments on this will be given below. Let �̂�, �̂�∗

and �̂� denote the BAR estimators of 𝜶, 𝜷∗ and 𝜸 given by the maximization 
above. In the following, we will establish the oracle property of �̂� = (�̂�𝑇 , �̂�∗𝑇 )𝑇 .

Let 𝜷0 = (𝛼𝑇0 , 𝛽0,1, … , 𝛽0,𝑝)𝑇 denote the true value of 𝜷 . Without loss of generality, assume that we can write 𝜷0 = (𝜷𝑇01, 𝜷
𝑇
02)

𝑇 , 
where 𝜷01 is a 𝑝1 + 𝑞 vector consisting of 𝛼0 and all 𝑞 (𝑞 ≪ 𝑝) nonzero components and 𝜷02 the remaining zero components. 
Correspondingly, we will divide the BAR estimator �̂� = (�̂�𝑇1 , �̂�

𝑇

2 )
𝑇 in the same way. Also for a vector of 𝜽1 and given 𝜷1, define 

𝑄𝑛1(𝜽1) =𝑄𝑛1(𝜽1|𝜷1) = 𝑙𝑛1(𝜽1) −𝜆𝑛𝜽𝑇1𝐷1(𝜷1)𝜽1, where 𝑙𝑛1(𝜽1) = 𝑙𝑛(𝜽1, 0|𝑋) and 𝐷1(𝜷1) = diag{𝟎𝑝1×1, 𝛽
−2
1 , … , 𝛽−2

𝑞
}. In the following, 

we assume that 𝑝 < 𝑛 but 𝑝 and 𝑞 can diverge or increase with the sample size 𝑛. For the oracle property, we need the following 
regularity conditions.

(C1). The maximum spacing of the knots satisfies Δ =max𝑙+1≤𝑗≤𝑚𝑛+𝑙+1
|||𝑡𝑗 − 𝑡𝑗−1

||| =𝑂 (𝑛−𝜈).

(C2). (i) The parameter space of 
(
𝛼𝑇 , 𝛽∗𝑇

)𝑇
, , is bounded and convex on ℝ𝑝1+𝑝, and the true parameter 

(
𝛼0, 𝛽

∗
0
)
∈ ◦, where 

◦ is the interior of . There exists a constant 𝐶0 > 0 such that 𝜆0(𝑡) ≥ 𝐶0 for 𝑡 ∈ [0, 𝜏]. In addition, the true failure rate 𝜆0
is differentiable up to order 𝑟 and all derivatives are bounded in [0, 𝜏], where 𝑟 ≥ 1. (ii) 𝑁𝑖(𝜏) (𝑖 = 1, 2, ..., 𝑛) are bounded by a 
constant. There exists 𝑍0 > 0 such that 𝑃 (‖𝑍‖ ≤ 𝑍0) = 1 and 𝐸(𝑍𝑍𝑇 ) is nonsingular. (iii) For some 𝜂 ∈ (0, 1), we have that 
𝑎𝑇 Var(𝑋 ∣𝑈 )𝑎 ≥ 𝜂𝑎𝑇 𝐸

(
𝑋𝑋𝑇 ∣𝑈

)
𝑎 and 𝑎𝑇 Var(𝑋 ∣ 𝑉 )𝑎 ≥ 𝜂𝑎𝑇 𝐸

(
𝑋𝑋𝑇 ∣ 𝑉

)
𝑎 almost surely for all 𝑎 ∈𝑝1+𝑝.

(C3). There exists a compact neighborhood 0 of the true value 𝜷0 and a positive definite (𝑝 + 𝑝1) × (𝑝 + 𝑝1) matrix 𝐼(𝜷0) such that

sup
𝜷∈0

‖− 𝑛−1𝑙𝑛(𝜷) − 𝐼(𝜷0)‖ 𝑎.𝑠.→ 0,

where 𝑙𝑛(𝜷) denotes the second derivative of 𝑙𝑛(𝜷|𝑋).
(C4). There exists some constant 𝐶 > 1 such that

𝐶−1 < 𝜆𝑚𝑖𝑛(−𝑛−1𝑙𝑛(𝜷)) ≤ 𝜆𝑚𝑎𝑥(−𝑛−1𝑙𝑛(𝜷)) < 𝐶

for sufficiently large 𝑛, where 𝜆𝑚𝑖𝑛(⋅) and 𝜆𝑚𝑎𝑥(⋅) denote the smallest and largest eigenvalues of the matrix, respectively.

(C5). There exist positive constants 𝑎0 and 𝑎1 such that 𝑎0 ≤ |𝛽0,𝑗 | ≤ 𝑎1, 1 ≤ 𝑗 ≤ 𝑞.

(C6). As 𝑛 →∞, we have that 𝑝2𝑞∕
√
𝑛→ 0, 𝜆𝑛∕

√
𝑛→ 0, 𝜉𝑛∕

√
𝑛→ 0, 𝜆𝑛

√
𝑞∕𝑛→ 0, and 𝜆2

𝑛
∕(𝑝
√
𝑛) →∞.

Theorem. Assume that the regularity conditions (C1) - (C6) described above hold. Then as 𝑛 → ∞ and with probability tending to 1, the 
BAR estimator �̂� = (�̂�𝑇1 , �̂�

𝑇

2 )
𝑇 exists and has the following properties:

(i) �̂�2 = 0.

(ii) �̂�1 is the unique fixed point of 𝑓 (𝜷1), where 𝑓 (𝜷1) is a solution to �̇�𝑛1(𝜽1) = 0 with �̇�𝑛1(𝜽1) denoting the first derivative of 𝑄𝑛1(𝜽1).
(iii) 

√
𝑛 (�̂�1 − 𝜷01) converges in distribution to the multivariate normal distribution 𝑁𝑝1+𝑞(0, Σ1(𝜷0)−1), where Σ1(𝜷0) is given in the 

Appendix.

The proof of the results above is sketched in the Appendix. For the determination of the proposed estimator, we will present a 
cyclic coordinate-wise optimization algorithm in the next section.

4. Cyclic coordinate-wise optimization algorithm

First, we will consider the determination of �̂�∗
and for this, we will take turn to update each element 𝛽𝑖 of 𝜷∗ while keeping all 

other elements of 𝜷∗ as well as 𝜸 and 𝜶 fixed at their current estimates. More specifically, define

𝑔
(
𝛽𝑗
)
=

𝑛∑
𝑖=1

log
⎡⎢⎢⎢⎣exp

⎧⎪⎨⎪⎩−
𝑈𝑖

∫
0

�̂�𝑇 𝐵(𝑡) exp

{∑
𝑙≠𝑗

𝛽𝑇
𝑙
𝑍𝑖𝑙 + 𝛽𝑗𝑍𝑖𝑗 + �̂�𝑇𝐻

(𝑖𝑡)}𝑑𝑡

⎫⎪⎬⎪⎭
−exp

⎧⎪⎨⎪⎩−
𝑉𝑖

∫
0

�̂�𝑇 𝐵(𝑡) exp

{∑
𝑙≠𝑗

𝛽𝑇
𝑙
𝑍𝑖𝑙 + 𝛽𝑗𝑍𝑖𝑗 + �̂�𝑇𝐻

(𝑖𝑡)}𝑑𝑡

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ .

Then at the 𝑘th iteration, we need to determine 𝛽(𝑘)
𝑗

, the value of 𝛽𝑗 that maximizes ℎ 
(
𝛽𝑗
)
= 𝑔
(
𝛽𝑗
)
− 𝑃𝜆

(|||𝛽𝑗 |||). Note that by 
borrowing the LQA idea discussed in Fan and Li (2001), 𝑔

(
𝛽𝑗
)

can be approximated by the second-order Taylor expansion

𝑔
(
𝛽𝑗
)
≈ 𝑔

(
𝛽
(𝑘−1)
𝑗

)
+ 𝑔′

(
𝛽
(𝑘−1)
𝑗

)(
𝛽𝑗 − 𝛽

(𝑘−1)
𝑗

)
+ 1

2
𝑔′′
(
𝛽
(𝑘−1)
𝑗

)(
𝛽𝑗 − 𝛽

(𝑘−1)
𝑗

)2
,

where 𝑔′ and 𝑔′′ denote the first and second derivatives of 𝑔, respectively. In consequence, we can obtain the close form iterative 
4

solution as
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𝛽
(𝑘)
𝑗

= 𝛽
(𝑘−1)
𝑗

−
ℎ′
(
𝛽
(𝑘−1)
𝑗

)
ℎ′′
(
𝛽
(𝑘−1)
𝑗

) ,
where ℎ′

(
𝛽
(𝑘−1)
𝑗

) and ℎ′′
(
𝛽
(𝑘−1)
𝑗

)
are the first and second derivatives of ℎ 

(
𝛽𝑗
)
= 𝑔
(
𝛽𝑗
)
−𝜆𝛽2

𝑗
∕ 
(
𝛽
(𝑘−1)
𝑗

)2
with respect to 𝛽𝑗 evaluated 

at 𝛽(𝑘−1)
𝑗

, respectively.

Note that our experience indicates that in the iteration above for each element of 𝜷∗, one only needs to update the estimate once. 
This is because the algorithm will update the estimates of 𝜷∗, 𝜸, and 𝜶 alternately and there is little reason to find the estimates of 
𝜷∗ with a high precision in one iteration based on the current estimates of 𝜶 and 𝜸. For the determination of the estimates of 𝜶 and 
𝜸 in the iteration, we suggest to employ the quasi-Newton algorithm since it is more convenient for the situation. The following gives 
the summary of the algorithm discussed above.

Step 1: Set 𝑘 = 0 and choose the initial estimates �̂�(0), �̂�(0), and �̂�∗(0)
.

Step 2: At the 𝑘th iteration, obtain �̂�(𝑘) and �̂�(𝑘) by using the R function optim with 𝜷∗ = �̂�
∗(𝑘−1)

.

Step 3: With 𝜸 = �̂�(𝑘) and 𝜶 = �̂�(𝑘), use the coordinate descent algorithm to determine

�̂�
∗(𝑘) = argmax

𝜷∗

{
𝑙𝑛

(
�̂�(𝑘),𝜷∗, �̂�(𝑘)

)
−

𝑝∑
𝑗=1

𝑃𝜆

(|||𝛽𝑗 |||)
}

.

Step 4: Repeat Steps 2 to 3 until the convergence or 𝑘 exceeding a given large number.

Note that for the better performance of the algorithm above, as with most algorithms, it is important to choose good initial 
estimates. For this, we suggest to use the ridge estimate or the estimate with the ridge penalty given by

�̂�
∗(0) = �̂�

∗
Ridge = argmax

𝜷∗

{
𝑙𝑛(�̂�,𝜷∗, �̂�) − 𝜉

𝑝∑
𝑗=1

𝛽2
𝑗

}
with the application of the algorithm above, where 𝜉 is another tuning parameter to be discussed below. To check the convergence 
in Step 4 above, one may apply various criteria. In the numerical studies below, we used the mean absolute difference between the 
consecutive estimates of all parameters defined as 𝑁−1 ‖‖‖�̂�(𝑘) − �̂�

(𝑘−1)‖‖‖1 =𝑁−1∑𝑁

𝑙=1 ∣ �̂�
(𝑘)
𝑙

− �̂�
(𝑘−1)
𝑙

∣< 𝜖 with setting 𝜖 = 10−4. Here 

𝜽 =
(
𝜶𝑇 ,𝜷∗𝑇 ,𝜸𝑇

)𝑇
, 𝑁 denotes the dimension of 𝜽, and �̂�(𝑘)

𝑙
represents the 𝑙th component of �̂�(𝑘).

To implement the algorithm above, also one needs to choose both tuning parameters 𝜉 and 𝜆 and for this, the simulation study 
below suggests that the estimation results seem to be robust with 𝜉 and one only needs to choose 𝜆. For this, we propose to employ 
or minimize the BIC, which is data-dependent and defined as

BIC𝜆 = −2𝑙𝑛(�̂�) + 𝑑𝑓𝜆 ⋅ log(𝑛) .

In the above, �̂� is the final estimator of 𝜽, 𝑙𝑛(�̂�) denotes the logarithm of the observed data likelihood function, and 𝑑𝑓𝜆 represents 
the total number of nonzero estimates in �̂� in the ultimate model, which serves as the degrees of freedom. The numerical results in 
the simulation study below suggest that BIC works well in practical situations. Of course, one could employ other methods such as 
Akaike information criterion or the cross-validation.

5. A simulation study

In this section, we present some results obtained from a simulation study conducted to assess the performance of the penalized 
variable selection procedure proposed in the previous sections. To generate the simulated data, the covariate vector 𝑍 was first 
generated from the multivariate normal distribution with mean zero, variance one, and the correlation between 𝑍𝑗 and 𝑍𝑘 being 
𝜌|𝑗−𝑘| with 𝜌 = 0.5, 𝑗, 𝑘 = 1, ..., 𝑝. Then the total numbers of observation times 𝑚𝑖 ’s and the observation times were generated. For 
the former, 𝑚𝑖 was assumed to follow the uniform distribution over {1, 2, 3, 4, 5, 6} and for the latter, given 𝑚𝑖, the observation times 
𝑠𝑖,𝑗 ’s were taken to be the order statistics of the 𝑚𝑖 random variables from the uniform distribution over (0.02, 1). Given the 𝑍𝑖 ’s and 
𝑠𝑖,𝑗 ’s or 𝑁𝑖(𝑡)’s, the true failure times 𝑇𝑖 s were generated under model (1) with 𝜆0(𝑡) = 1 or 𝜆0(𝑡) = 1∕(𝑡 + 1) and 𝐻

(𝑖𝑡) =𝑁𝑖(𝑡−).
To assess the performance of the proposed method, we calculated three evaluation metrics, the mean weighted squared error 

(MSE), the true positive rate (TPR) and the false positive rate (FPR). Here MSE was defined to be 
(
�̂�
∗ − 𝜷∗

0

)𝑇
𝐸
(
𝑍𝑍′)(�̂�∗ − 𝜷∗

0

)
, 

and TPR and FPR were defined as

𝑇𝑃𝑅 = 𝑇𝑃

𝑅
and 𝐹𝑃𝑅 = 𝐹𝑃

𝑇𝑂 −𝑅
.

In the above, TP, true positive, denotes the number of the variables with non-zero coefficients that were correctly identified by the 
approach, FP, false positive, the number of the variables with zero coefficients that were incorrectly identified, 𝑅 is the number of 
non-zero predictors, and 𝑇𝑂 is the total number of the predictors in the simulated data. The results given below are based on 𝑛 = 200
5

or 400 and 𝑝 = 8 or 30 with 100 replications.
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Table 1

Simulation results for informatively interval-censored data.

Sample Size MMSE(SD) TPR FPR

𝑝 = 8

Λ0(𝑡) = 𝑡 𝑛 = 200 0.077(0.189) 1 0.014

𝑛 = 400 0.033(0.059) 1 0.012

Λ0(𝑡) = log(𝑡+ 1) 𝑛 = 200 0.080(0.143) 1 0.014

𝑛 = 400 0.033(0.054) 1 0.014

𝑝 = 30

Λ0(𝑡) = 𝑡 𝑛 = 200 0.261(0.483) 1 0.017

𝑛 = 400 0.060(0.073) 1 0.010

Λ0(𝑡) = log(𝑡+ 1) 𝑛 = 200 0.289(0.450) 1 0.018

𝑛 = 400 0.076(0.076) 1 0.010

Table 2

Simulation results for joint analysis with 𝑁𝑖(𝑡) being Poisson process.

Sample Size MMSE(SD) TPR FPR

𝑝 = 8

Λ0(𝑡) = 𝑡 𝑛 = 200 0.055(0.111) 1 0.018

𝑛 = 400 0.027(0.041) 1 0.014

Λ0(𝑡) = log(𝑡+ 1) 𝑛 = 200 0.055(0.138) 1 0.018

𝑛 = 400 0.026(0.034) 1 0.006

𝑝 = 30

Λ0(𝑡) = 𝑡 𝑛 = 200 0.132(0.352) 1 0.016

𝑛 = 400 0.061(0.087) 1 0.015

Λ0(𝑡) = log(𝑡+ 1) 𝑛 = 200 0.158(0.493) 1 0.018

𝑛 = 400 0.068(0.072) 1 0.012

Table 1 presents the results on the covariate selection given by the approach proposed in the previous sections. Here we set 
𝛽∗𝑇 = (1, 1, 0, 0, 0, 0, 0, 1) or (1, 1, 𝟎26, 1, 1), and 𝛼 = 1. Also we used the cubic B-splines and took 𝑚𝑛 = 𝑛𝑣 with 𝑣 = 1∕4. For a given 
number of the interior knots 𝑚𝑛, the equally spaced knots were chosen. For the selection of the tuning parameter 𝜆𝑛, the BIC criterion 
based on the grid search was used, and for the tuning parameter 𝜉, we set 𝜉 = 100 since as mentioned above, the results are not 
sensitive to the choice of 𝜉. One can see from Table 1 that the proposed procedure seems to work well for the situations considered 
here. As expected, the performance got better when the sample size increased or for smaller 𝑝.

As discussed above, the proposed method also applies to joint analysis of interval-censored data and panel count data with 𝑁𝑖(𝑡)
representing a recurrent event process that may be correlated to the failure process of interest and on which only panel count data 
are available (Xu et al., 2018). To evaluate the performance of the proposed approach for the situation, for the 𝑁𝑖(𝑡)’s, we generated 
the panel count data from the Poisson process or mixed Poisson process with the mean function Λ1 (𝑡) exp

(
𝜁𝑍𝑖

)
and set

𝑁𝑖

(
𝑠𝑖,𝑗
)
=𝑁𝑖

(
𝑠𝑖,1
)
+ {𝑁𝑖

(
𝑠𝑖,2
)
−𝑁𝑖

(
𝑠𝑖,1
)
} +…+ {𝑁𝑖

(
𝑠𝑖,𝑗
)
−𝑁𝑖

(
𝑠𝑖,𝑗−1

)
} .

In the above, it was assumed that

𝑁𝑖

(
𝑠𝑖,1
)
∼ Poisson

{
Λ1
(
𝑠𝑖,1
)
exp
(
𝜁𝑍𝑖

)}
,

𝑁𝑖

(
𝑠𝑖,𝑗
)
−𝑁𝑖

(
𝑠𝑖,𝑗−1

)
∼ Poisson

{[
Λ1
(
𝑠𝑖𝑗
)
−Λ1

(
𝑠𝑖,𝑗−1

)]
exp
(
𝜁𝑍𝑖

)}
,

or

𝑁𝑖

(
𝑠𝑖,1
)
∼ Poisson

{
𝜂Λ1
(
𝑠𝑖,1
)
exp
(
𝜁𝑍𝑖

)}
,

𝑁𝑖

(
𝑠𝑖,𝑗
)
−𝑁𝑖

(
𝑠𝑖,𝑗−1

)
∼ Poisson

{
𝜂
[
Λ1
(
𝑠𝑖𝑗
)
−Λ1

(
𝑠𝑖,𝑗−1

)]
exp
(
𝜁𝑍𝑖

)}
for 𝑗 = 2, … , 𝑚𝑖, 𝑖 = 1, … , 𝑛. Here 𝜁 is a vector of regression parameters as 𝛽∗, 𝜂 follows the gamma distribution with mean one and 
variance 0.25, and Λ1(𝑡) = 𝑡. The other information was generated in the same way as above.

Tables 2 and 3 give the results on the covariate selection given by the proposed approach with 𝜁𝑇 = (0.2, 0.2, 0, 0, 0, 0, 0, 0.2)
or (0.2, 0.2, 𝟎26, 0.2, 0.2) and the 𝑁𝑖 (𝑡)’s being the Poisson process or the mixed Poisson processes, respectively. It is apparent that 
they are similar to those given in Table 1 and indicate that the proposed method works well. To further see the performance of 
the proposed approach in terms of estimating the baseline cumulative hazard function Λ0(𝑡) = ∫ 𝑡

0 𝜆0(𝑠) 𝑑𝑠, Figs. 1 and 2 present 
6

the averages of the estimates given by the proposed method corresponding to the situation considered in Table 3 with 𝑛 = 400, 
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Fig. 1. Estimates of Λ0(𝑡) = log(𝑡 + 1) for the mixed Poisson process with p=8. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Fig. 2. Estimates of Λ0(𝑡) = log(𝑡+ 1) for the mixed Poisson process with p=30.

Λ0(𝑡) = log(𝑡 + 1), and 𝑝 = 8 or 𝑝 = 30, respectively. For comparison, the true curve is included in the figures too. They suggest that 
the proposed method seems to perform well. We also considered other situations or set-ups and obtained similar results.

6. Analysis of the Alzheimer’s disease data

Now we apply the methodology proposed in the previous sections to the data arising from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) described above. As mentioned before, in the study, the information on many biomarkers were collected in order 
to identify these that can be used for the early detection and tracking of the Alzheimer’s disease (AD), and the participants were 
examined periodically for their AD status. Based on their cognitive conditions, the participants were initially grouped into three 
groups, cognitively normal, mild cognitive impairment (MCI) and Alzheimer’s disease. Among others, one variable of interest is the 
time from the baseline visit date to the AD conversion, and as expected, many patients dropped out of the study early and some 
missed their scheduled visits. Thus the participants have different observation times and only interval-censored data are available on 
the AD conversion time.

For the analysis here, we will define 𝑇𝑖 and 𝑁𝑖 to represent the AD conversion time and the observation process, respectively. 
By following Li et al. (2017a,2017b) and others, we will focus on the 319 participants in the MCI group for whom the information 
on 24 covariates is complete in order to identify important prognostic factors for the AD conversion. These 24 demographic and 
clinical covariates were identified as possible important factors associated with the AD conversion by Li et al. (2017a,2017b), who 
considered a similar problem by performing a simple or individual analysis. In addition to the information on the covariates, the 
7

observed data for each participant include the number of observations as well as the observation times and the event indicators. 
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Table 3

Simulation results for joint analysis with 𝑁𝑖(𝑡) being mixed-Poisson pro-

cess.

Sample Size MMSE(SD) TPR FPR

𝑝 = 8

Λ0(𝑡) = 𝑡 𝑛 = 200 0.054(0.137) 1 0.022

𝑛 = 400 0.026(0.038) 1 0.006

Λ0(𝑡) = log(𝑡+ 1) 𝑛 = 200 0.056(0.145) 1 0.018

𝑛 = 400 0.026(0.042) 1 0.014

𝑝 = 30

Λ0(𝑡) = 𝑡 𝑛 = 200 0.146(0.299) 1 0.016

𝑛 = 400 0.062(0.077) 1 0.010

Λ0(𝑡) = log(𝑡+ 1) 𝑛 = 200 0.125(0.344) 1 0.016

𝑛 = 400 0.064(0.095) 1 0.013

Table 4

Analysis results for the ADNI with 𝐻(𝑡) =𝑁(𝑡−).

Proposed Method Du et al. (2021) Li et al. (2020)

Factor Estimate SSE Estimate SSE Estimate SSE

PTEDUCAT - - 0.077 0.110 - -

PTMARRY - - - - - -

CDRSB - - 0.211 0.177 - -

ADAS11 - - - - - -

ADAS13 - - 0.276 0.173 0.245 0.220

ADASQ4 - - - - - -

MMSE - - -0.126 0.124 - -

RAVLT.i -0.597 0.156 -0.577 0.212 -0.582 0.220

RAVLT.l - - 0.231 0.269 - -

RAVLT.f - - - - - -

RAVLT.perc.f - - 0.142 0.328 - -

DIGITSCOR - - - - - -

TRABSCOR - - - - - -

FAQ 0.353 0.159 0.358 0.198 0.297 0.176

Ventricles - - - - - -

Hippocampus - - -0.070 0.182 - -

WholeBrain - - - - - -

Entorhinal -0.433 0.227 -0.306 0.165 -0.184 0.218

Fusiform - - - - - -

MidTemp -0.328 0.179 -0.652 0.228 -0.434 0.219

ICV - - 0.311 0.254 - -

Age -0.265 0.182 -0.322 0.152 -0.208 0.199

APOE𝜖4 - - 0.471 0.170 0.137 0.151

Gender - - - - - -

Furthermore, for the analysis, as in the simulation study, we will employ the BIC to select the optimal tuning parameter 𝜆 while 
setting 𝜉 = 100.

The factor selection and estimation results are given in Table 4 with the use of 𝐻
(𝑖𝑡) = 𝑁𝑖(𝑡−). Here as in the simulation 

study, we set the equally spaced knots for the given number of the interior knots 𝑚𝑛. We tried other ways for the knot selection 
and obtained similar results. For each selected factor, in addition to the estimated factor effect, we also provide the estimated 
standard error obtained by using the bootstrap procedure with 100 bootstrap samples randomly drawn with replacement from the 
observed data. One can see from Table 4 that five factors, RAVLT.i, FAQ, Entorhinal, MidTemp, and Age, were selected. Among 
them, RAVLT.i and FAQ seem to have significant effects on the AD conversion, while Entorhinal and MidTemp also appear to be 
marginally correlated with the AD conversion.

For comparison, we also include in Table 4 the results given by Li et al. (2020) and Du et al. (2021), which selected 7 and 14 
factors, respectively. Note that the former assumes non-informative interval censoring, while the latter employs some latent variables 
to model informative interval censoring. It is clear that all of the three methods gave similar results for the selected factors and most 
of the extra factors selected by the two other methods did not seem to have much effects on the AD conversion. In other words, these 
results indicate that the censoring indeed seems to be informative and the two other methods tend to over-select factors. We also ( )
8

considered other choices for 𝐻 𝑖𝑡 and obtained similar results.



Computational Statistics and Data Analysis 198 (2024) 107991M. Du and X. Zhao

7. Concluding remarks

This paper considered regression analysis of informatively interval-censored failure time data. Corresponding to the existing joint 
modeling approaches, a conditional approach was proposed. More specifically, a conditional PH model was presented and a penalized 
sieve maximum likelihood estimation approach was proposed. For the implementation of the proposed method, a cyclic coordinate-

wise optimization algorithm was developed and the oracle property of the resulting estimators was established. As discussed above, 
the proposed procedure also applies to joint analysis of interval-censored data and panel count data, and one advantage of the 
proposed method is that it does not impose any assumption on the censoring or observation processes. The numerical results indicated 
that the procedure works well for practical situations.

Note that as mentioned above, unlike the existing methods that allow for informative interval censoring, the proposed method 
took a conditional approach that avoids the use of frailty variables and their related distribution assumption as well as the commonly 
used Poisson process assumption for the situation. Also unlike the existing methods for variable selection based on interval-censored 
data such as that given in Zhao et al. (2020), the proposed approach allows for informative censoring. In other words, the proposed 
method is more general and robust, and furthermore, it allows one to directly estimate the degree of the dependent censoring.

In the proposed method, we have focused on the use of the BAR penalty function and as mentioned above, the method is still 
valid with other penalty functions replacing the BAR penalty function. However, some minor modifications to the algorithm may 
be needed depending on the penalty function and also the proof of the oracle property could be different. Also in the proposed 
method, B-spline functions have been used to approximate the baseline hazard function. As an alternative, one could apply other 
spline functions and develop similar variable selection procedures.
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Appendix A. Proof of the oracle property

In this appendix, we will sketch the proof of the oracle property described in the theorem and the main idea behind the proof is 
similar to that of Zhao et al. (2020). To prove the theorem, we need the following three lemmas. For simplicity, we assume that 𝜶 is 
a one-dimensional variable coefficient.

Lemma 1 (Consistency of the ridge estimator). Let 𝜷𝑟𝑖𝑑𝑔𝑒 denote the ridge estimator defined as 𝜷𝑟𝑖𝑑𝑔𝑒 = argmax𝜷{𝑙𝑛(𝜷, 𝜸|𝑋) − 𝜉𝑛
∑𝑝

𝑗=1 𝛽
2
𝑗
}, 

and suppose that the conditions (C1) - (C6) hold. Then we have that ‖𝜷𝑟𝑖𝑑𝑔𝑒 − 𝜷0‖ =𝑂𝑝(
√
𝑝∕𝑛) .

Proof. Denote (𝜷) = 𝑙𝑛(𝜷, 𝜸|𝑋) −𝜉𝑛
∑𝑝

𝑗=1 𝛽
2
𝑗
= 𝑙𝑛(𝜷, 𝜸|𝑋) −𝑛 

∑𝑝

𝑗=1 𝑝𝜉𝑛 (𝛽0𝑗 ), 𝑎𝑛= max
1≤𝑗≤𝑞{|�̇�𝜉𝑛 (𝛽0𝑗 )| ∶ 𝛽0𝑗 ≠ 0}, and 𝑏𝑛= max

1≤𝑗≤𝑞{|�̈�𝜉𝑛 (𝛽0𝑗 )| ∶
𝛽0𝑗 ≠ 0}. For ridge regression we can see that 𝑝𝜉𝑛 (𝛽0𝑗 ) = 𝛽20𝑗𝜉𝑛∕𝑛 for 𝑗 = 1, … , 𝑝. Thus the first and second derivatives of 𝑝𝜉𝑛 (𝛽0𝑗 ) are 
�̇�𝜉𝑛

(𝛽0𝑗 ) = 2𝛽0𝑗𝜉𝑛∕𝑛 and �̈�𝜉𝑛 (𝛽0𝑗 ) = 2𝜉𝑛∕𝑛 respectively. From Conditions (C5) and (C6) we have that 𝑎𝑛 ≤ 2𝑎1𝜉𝑛∕𝑛 = 𝑜(𝑛−1∕2) and 
𝑏𝑛 ≤ 2𝜉𝑛∕𝑛 = 𝑜(𝑛−1∕2). Therefore, 𝑎𝑛 → 0, and 𝑏𝑛 → 0.

Let 𝛼𝑛 =
√
𝑝(𝑛−1∕2 + 𝑎𝑛), then using the similar manipulation as those in Cai et al. (2005), we can prove that, for any given 𝜖 > 0, 

there exists a large constant 𝐶0 such that

𝑃 { sup‖𝒗‖=𝐶0

(𝜷0 + 𝛼𝑛𝒗) <(𝜷0)} ≥ 1 − 𝜖,

which implies that there exists a local maximiser, 𝜷𝑟𝑖𝑑𝑔𝑒, such that ‖𝜷𝑟𝑖𝑑𝑔𝑒 − 𝜷0‖ =𝑂𝑝(𝛼𝑛) =𝑂𝑝(
√
𝑝∕𝑛).

To describe Lemma 2, for a vector of 𝜽 and given 𝜷 , define 𝑄𝑛(𝜽) ≡ 𝑄𝑛(𝜽; 𝜷, 𝑋) = 𝑙𝑛(𝜽|𝑋) − 𝜆𝑛𝜽
𝑇𝐷(𝜷) 𝜽, where 𝐷(𝜷) =

diag{0, 𝛽−21 , … , 𝛽−2
𝑝

}. Then the first and second derivatives of 𝑄𝑛(𝜽) are �̇�𝑛(𝜽) = �̇�𝑛(𝜽|𝑋) −2𝜆𝑛𝐷(𝜷)𝜽, and �̈�𝑛(𝜽) = 𝑙𝑛(𝜽|𝑋) −2𝜆𝑛𝐷(𝜷).

Lemma 2. Suppose 𝑔(𝜷) = (𝑔1(𝜷)𝑇 , 𝑔2(𝜷)𝑇 )𝑇 is a solution to �̇�𝑛(𝜽) = 0 and let {𝛿𝑛} be a sequence of positive real numbers satisfying 
𝛿𝑛 → ∞ and 𝛿2

𝑛
𝑝∕𝜆𝑛 → 0. Furthermore, define 𝑛 ≡ {𝜷 = (𝜷𝑇1 , 𝜷

𝑇
2 )

𝑇 ∶ |𝜷1| = (|𝛼|, |𝛽1|, … , |𝛽𝑞|)𝑇 ∈ [1∕𝐾0, 𝐾0]𝑞+1, ‖𝜷2‖ ≤ 𝛿𝑛

√
𝑝∕𝑛}, 

where 𝐾0 > 1 is a constant such that |𝜷01| ∈ [1∕𝐾0, 𝐾0]𝑞+1. Then under the regularity conditions (C1)−(C6) and with probability tending 
to 1, we have that

(i) sup
𝜷∈𝐻𝑛

‖𝑔2(𝜷)‖‖𝜷2‖ <
1
𝐶0

for some constant 𝐶0 > 1;
9

(ii) 𝑔(⋅) is a mapping from 𝑛 to itself.
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Proof. Taking the first-order Taylor expansion for �̇�𝑛(𝜽) at 𝜷0 in a neighborhood of 𝑔(𝜷), we have that, �̇�𝑛(𝜷0) = �̇�𝑛(𝑔(𝜷)) +
�̈�𝑛(𝜷∗)(𝜷0 −𝑔(𝜷)), where 𝜷0 is the true parameter vector, and 𝜷∗ lies between 𝜷0 and 𝑔(𝜷). Then, �̈�𝑛(𝜷∗)𝑔(𝜷) = −�̇�𝑛(𝜷0) + �̈�𝑛(𝜷∗)𝜷0
since �̇�𝑛(𝑔(𝜷)) = 0. Substituting �̇�𝑛(𝜽) and �̈�𝑛(𝜽) to the above equation, we have[1

𝑛
𝑙𝑛(𝜷∗|𝑋) −

2𝜆𝑛
𝑛
𝐷(𝜷)

]
𝑔(𝜷) = 1

𝑛
𝑙𝑛(𝜷∗|𝑋)𝜷0 −

1
𝑛
�̇�𝑛(𝜷0|𝑋). (𝐴1)

Denote 𝐻𝑛(𝜷∗) = −1
𝑛
𝑙𝑛(𝜷∗|𝑋) and from (C3), 𝐻𝑛(𝜷∗)−1 exists. Then multiplying both sides of (𝐴1) by 𝐻𝑛(𝜷∗)−1,

𝑔(𝜷) − 𝜷0 +
2𝜆𝑛
𝑛
𝐻𝑛(𝜷∗)−1𝐷(𝜷)𝑔(𝜷) = 1

𝑛
𝐻𝑛(𝜷∗)−1 �̇�𝑛(𝜷0|𝑋). (𝐴2)

Partition 𝐻𝑛(𝜷∗)−1 and 𝐷(𝜷) into

𝐻𝑛(𝜷∗)−1 =
(

𝐴 𝐵

𝐵𝑇 𝐺

)
and 𝐷(𝜷) =

(
𝐷1(𝜷1) 0

0 𝐷2(𝜷2)

)
,

where 𝐴 is a (𝑞 +1) × (𝑞 +1) matrix, 𝐷1(𝜷1) = diag{0, 𝛽−21 , … , 𝛽−2
𝑞

} and 𝐷2(𝜷2) = diag{𝛽−2
𝑞+1, … , 𝛽−2

𝑝
}. Then (𝐴2) can be rewritten as(

𝑔1(𝜷) − 𝜷01
𝑔2(𝜷)

)
+

2𝜆𝑛
𝑛

(
𝐴𝐷1(𝜷1)𝑔1(𝜷) +𝐵𝐷2(𝜷2)𝑔2(𝜷)
𝐵𝑇𝐷1(𝜷1)𝑔1(𝜷) +𝐺𝐷2(𝜷2)𝑔2(𝜷)

)
= 1
𝑛
𝐻𝑛(𝜷∗)−1 �̇�𝑛(𝜷0|𝑋). (𝐴3)

By arguments similar to those in Theorem 1 of Cai et al. (2005), Conditions (C1)−(C5) guarantee that ‖1
𝑛
𝐻𝑛(𝜷∗)−1 �̇�𝑛(𝜷0|𝑋‖ =

𝑂𝑝(
√
𝑝∕𝑛), therefore,

sup
𝜷∈𝐻𝑛

‖𝑔2(𝜷) + 2𝜆𝑛
𝑛
𝐵𝑇𝐷1(𝜷1)𝑔1(𝜷) +

2𝜆𝑛
𝑛
𝐺𝐷2(𝜷2)𝑔2(𝜷)‖ =𝑂𝑝(

√
𝑝∕𝑛). (𝐴4)

Note that |𝜷1| ∈ [1∕𝐾0, 𝐾0]𝑞+1, ‖𝑔1(𝜷)‖ ≤ ‖𝑔(𝜷)‖ ≤ ‖�̂�‖ = 𝑂𝑝(
√
𝑝), where �̂� is equal to 𝑔(𝜷) with 𝜉 = 0, and furthermore, from ‖𝐵𝐵𝑇 ‖ − ‖𝐴2‖ ≤ ‖𝐵𝐵𝑇 +𝐴2‖ ≤ ‖𝐻𝑛(𝜷∗)−2‖ < 𝐶2, we can derive ‖𝐵‖ ≤√2𝐶 and

sup
𝜷∈𝐻𝑛

‖‖‖2𝜆𝑛𝑛 𝐵𝑇𝑫1(𝜷1)𝑔1(𝜷)
‖‖‖ ≤ 2𝜆𝑛

𝑛
sup
𝜷∈𝐻𝑛

‖‖‖𝐵𝑇 ‖‖‖‖‖‖𝐷1(𝜷1)
‖‖‖‖‖‖𝑔1(𝜷)‖‖‖ = 𝑜𝑝(

√
𝑝∕𝑛), (𝐴5)

then (𝐴4) can be rewritten as sup
𝜷∈𝐻𝑛

‖𝑔2(𝜷) + 2𝜆𝑛
𝑛
𝐺𝐷2(𝜷2)𝑔2(𝜷)‖ = 𝑂𝑝(

√
𝑝∕𝑛). At the same time, 2𝜆𝑛

𝑛
‖𝐺𝐷2(𝜷2)𝑔2(𝜷)‖ ≥

2𝜆𝑛
𝑛

1
𝐶
‖𝐷2(𝜷2)𝑔2(𝜷)‖, and thus

1
𝐶
‖2𝜆𝑛

𝑛
𝐷2(𝜷2)𝑔2(𝜷)‖− ‖𝑔2(𝜷)‖ ≤ sup

𝜷∈𝐻𝑛

‖𝑔2(𝜷) + 2𝜆𝑛
𝑛
𝐺𝐷2(𝜷2)𝑔2(𝜷)‖ ≤ 𝛿𝑛(

√
𝑝∕𝑛). (𝐴6)

Let 𝑚𝑔2(𝜷)∕𝜷2 = (𝑔2(𝛽𝑞+1)∕𝛽𝑞+1, 𝑔2(𝛽𝑞+2)∕𝛽𝑞+2, … , 𝑔2(𝛽𝑝)∕𝛽𝑝)𝑇 , then 𝑔2(𝜷) = 𝐷2(𝜷2)−1∕2𝑚𝑔2(𝜷)∕𝜷2 . Furthermore, it follows from the 
Cauchy-Schwarz inequality and the assumption ‖𝜷2‖ ≤ 𝛿𝑛

√
𝑝∕𝑛 that

1
𝐶
‖2𝜆𝑛

𝑛
𝐷2(𝜷2)𝑔2(𝜷)‖ ≥ 2𝜆𝑛

𝑛𝐶

√
𝑛

𝛿𝑛
√
𝑝
‖𝑚𝑔2(𝜷)∕𝜷2‖, and (𝐴7)

‖𝑔2(𝜷)‖ = ‖(𝐷2(𝜷2))−1∕2𝑚𝑔2(𝜷)∕𝜷2‖ ≤ ‖𝑚𝑔2(𝜷)∕𝜷2‖ ⋅ ‖𝜷2‖ ≤ ‖𝑚𝑔2(𝜷)∕𝜷2‖𝛿𝑛√𝑝∕𝑛. (𝐴8)

By (𝐴6), (𝐴7) and (𝐴8), we have the following inequality

2𝜆𝑛
𝑛𝐶

√
𝑛

𝛿𝑛
√
𝑝
‖𝑚𝑔2(𝜷)∕𝜷2‖− 𝛿𝑛

√
𝑝√
𝑛
‖𝑚𝑔2(𝜷)∕𝜷2‖ ≤ 𝛿𝑛

√
𝑝√
𝑛
.

Immediately from 𝑝𝛿2
𝑛
∕𝜆𝑛 → 0, we have ‖𝑚𝑔2(𝜷)∕𝜷2‖ ≤ 1

2𝜆𝑛
𝑝𝛿2𝑛𝐶

− 1
<

1
𝐶0
, (𝐶0 > 1), with probability tending to one. Hence with proba-

bility tending to one, ‖𝑔2(𝜷)‖ ≤ ‖𝜷2‖‖𝑚𝑔2(𝜷)∕𝜷2‖ ≤ 1
𝐶0
‖𝜷2‖ as 𝑛 →∞, which implies that conclusion (i) holds and ‖𝑔2(𝜷)‖ ≤ 𝛿𝑛

√
𝑝∕𝑛

with probability tending to 1.

To prove (ii), we only need to verify that ‖𝑔1(𝜷) −𝜷01‖ ≤ 𝛿𝑛

√
𝑝∕𝑛 with probability tending to 1. Analogously, from (𝐴3), we have 

sup𝜷∈𝐻𝑛

‖‖‖ 2𝜆𝑛𝑛 𝐴𝐷1(𝜷1)𝑔1(𝜷)
‖‖‖ = 𝑜𝑝(

√
𝑝∕𝑛), and sup𝜷∈𝐻𝑛

‖‖‖𝑔1(𝜷) − 𝜷01 +
2𝜆𝑛
𝑛
𝐵𝐷2(𝜷2)𝑔2(𝜷)

‖‖‖ =𝑂𝑝(
√
𝑝∕𝑛) ≤ 𝛿𝑛

√
𝑝∕𝑛. Again by (𝐴6), we 
10

know that as 𝑛 →∞ and with probability tending to one,
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sup
𝜷∈𝐻𝑛

‖‖‖2𝜆𝑛𝑛 𝐵𝐷2(𝜷2)𝑔2(𝜷)
‖‖‖ ≤ 𝐶(‖𝑔2(𝜷)‖+ 𝛿𝑛

√
𝑝∕𝑛)‖𝐵‖ ≤ 2

√
2𝐶2𝛿𝑛

√
𝑝∕𝑛.

Since ‖‖‖𝑔1(𝜷) −𝜷01
‖‖‖− 2𝜆𝑛

𝑛

‖‖‖𝐵𝐷2(𝜷2)𝑔2(𝜷)
‖‖‖ ≤ sup

𝜷∈𝐻𝑛

‖‖‖𝑔1(𝜷) −𝜷01 +
2𝜆𝑛
𝑛
𝐵𝐷2(𝜷2)𝑔2(𝜷)

‖‖‖ ≤ 𝛿𝑛

√
𝑝∕𝑛, then sup

𝜷∈𝐻𝑛

‖‖‖𝑔1(𝜷) −𝜷01
‖‖‖ ≤ (2

√
2𝐶2 +

1)𝛿𝑛
√
𝑝∕𝑛→ 0 with probability tending to one, which implies that for any 𝜖 > 0, 𝑃 (‖𝑔1(𝜷) −𝜷01‖ ≤ 𝜖) → 1. Thus it follows from 𝜷01 ∈

[1∕𝐾0, 𝐾0]𝑞+1 that 𝑔1(𝜷) ∈ [1∕𝐾0, 𝐾0]𝑞+1 holds for large 𝑛, which implies that conclusion (ii) holds. This completes the proof. □

Since 𝜷02 = 0, we can express the objective function of this reduced model as 𝑄𝑛1(𝜽1) = 𝑙𝑛1(𝜽1) − 𝜆𝑛𝜽
𝑇
1𝐷1(𝜷1)𝜽1.

Lemma 3. Let 𝑓 (𝜷1) be a solution to �̇�𝑛1(𝜽1) = 0, then under regularity conditions (C1)−(C6) and with probability tending to 1,

(i) 𝑓 (𝜷1) is a contraction mapping from [1∕𝐾0, 𝐾0]𝑞+1 to itself;

(ii) 
√
𝑛(�̂�𝑜1 − 𝜷01) 

𝐷
→𝑁(0, Σ1), where �̂�𝑜1 is the unique fixed point of 𝑓 (𝜷1) and Σ1(𝜷0) is shown below.

Proof. (i) Similar as the derivation of (𝐴2), through the first order Taylor expansion, we have that

𝑓 (𝜷1) − 𝜷01 +
2𝜆𝑛
𝑛
𝐻𝑛1(𝜷∗

1)
−1𝐷1(𝜷1)𝑓 (𝜷1) =

1
𝑛
𝐻𝑛1(𝜷∗

1)
−1 �̇�𝑛1(𝜷01), (𝐴9)

where 𝐻𝑛1(𝜷∗
1) = −𝑛−1𝑙𝑛1(𝜷∗

1) and 𝜷∗
1 lies between 𝜷01 and 𝑓 (𝜷1). From 𝑛−1 �̇�𝑛1(𝜷01) =𝑂𝑝(𝑞∕𝑛) we know that,

sup|𝜷1|∈[1∕𝐾0 ,𝐾0]𝑞+1
‖𝑓 (𝜷1) − 𝜷01 +

2𝜆𝑛
𝑛
𝐻𝑛1(𝜷∗

1)
−1𝐷1(𝜷1)𝑓 (𝜷1)‖ =𝑂𝑝(

√
𝑞∕𝑛).

By (C3) and similar as the proof process of Lemma 2, we have that

sup|𝜷1|∈[1∕𝐾0 ,𝐾0]𝑞+1
‖2𝜆𝑛

𝑛
𝐻𝑛1(𝜷∗

1)
−1𝐷1(𝜷1)𝑓 (𝜷1)‖ = 𝑜𝑝(

√
𝑞∕𝑛). (𝐴10)

Thus with the probability tending to one, sup|𝜷1|∈[1∕𝐾0 ,𝐾0]𝑞+1 ‖𝑓 (𝜷1) − 𝜷01‖ ≤ 𝛿𝑛

√
𝑞∕𝑛 → 0, which implies that 𝑃 {𝑓 (𝜷1) ∈

[1∕𝐾0, 𝐾0]𝑞+1} → 1 as 𝑛 →∞. That is, 𝑓 (𝜷1) is a mapping from [1∕𝐾0, 𝐾0]𝑞+1 to itself. Next to prove 𝑓 (𝜷1) is a contraction mapping, 
we need show that sup|𝜷1|∈[1∕𝐾0 ,𝐾0]𝑞+1 ‖ ̇𝑓 (𝜷1)‖ = 𝑜𝑝(1).

From �̇�𝑛1(𝑓 (𝜷1)) = 0 we have �̇�𝑛1(𝑓 (𝜷1)) = 2𝜆𝑛𝐷1(𝜷1)𝑓 (𝜷1). Taking the derivative with respect to 𝜷𝑇1 on both sides of the above 
equation and rearranging terms, we obtain that

[2𝜆𝑛
𝑛
𝐷1(𝜷1) +𝐻𝑛1(𝑓 (𝜷1))

]
̇𝑓 (𝜷1) =

4𝜆𝑛
𝑛
𝑓 (𝜷1)diag(0,𝜷−3

1 ,… ,𝜷−3
𝑞
), (𝐴11)

where ̇𝑓 (𝜷1) = 𝜕𝑓 (𝜷1)∕𝜕𝜷1
𝑇 . From the fact that 𝜆𝑛∕

√
𝑛 → 0, ‖𝑓 (𝜷1)‖ and ‖𝜷1‖ are bounded, we have sup|𝜷1|∈[1∕𝐾0 ,𝐾0]𝑞+1 ×

4𝜆𝑛
𝑛

‖‖‖𝑓 (𝜷1)diag(0, 𝜷−3
1 , … , 𝜷−3

𝑞
)‖‖‖ = 𝑜𝑝(1). Again, since 1∕𝐶‖ ̇𝑓 (𝜷1)‖ ≤ ‖𝐻𝑛1(𝑓 (𝜷1)) ̇𝑓 (𝜷1)‖ ≤ 𝐶‖ ̇𝑓 (𝜷1)‖ and 1∕𝐾2

0‖ ̇𝑓 (𝜷1)‖ ≤‖𝐷1(𝜷1) ̇𝑓 (𝜷1)‖ ≤𝐾2
0‖ ̇𝑓 (𝜷1)‖, and from (𝐴11), we can reach the conclusion that sup|𝜷1|∈[1∕𝐾0 ,𝐾0]𝑞+1 ‖ ̇𝑓 (𝜷1)‖ = 𝑜𝑝(1), which implies 

that 𝑓 (⋅) is a contraction mapping from [1∕𝐾0, 𝐾0]𝑞+1 to itself with probability tending to one. Hence according to the contraction 
mapping theorem, there exists one unique fixed-point �̂�𝑜1 ∈ [1∕𝐾0, 𝐾0]𝑞+1 such that 𝑓 (�̂�𝑜1) = �̂�

𝑜

1.

(ii) From (𝐴9), we have 𝑓 (𝜷1) =
[
𝐻𝑛1(𝜷∗

1) +
2𝜆𝑛
𝑛
𝐷1(𝜷1)

]−1[
𝐻𝑛1(𝜷∗

1)𝜷01 +
1
𝑛
�̇�𝑛1(𝜷01)

]
. Denote Φ(�̂�𝑜1) =

[
𝐻𝑛1(𝜷∗

1) +
2𝜆𝑛
𝑛
𝐷1(�̂�

𝑜

1)
]−1

, 

then we have �̂�𝑜1 = 𝑓 (�̂�𝑜1) =Φ(�̂�𝑜1)𝐻𝑛1(𝜷∗
1)𝜷01 +

1
𝑛
Φ(�̂�𝑜1)�̇�𝑛1(𝜷01)

]
, and

√
𝑛(�̂�𝑜1 − 𝜷01) =

√
𝑛

{
Φ(�̂�𝑜1)𝐻𝑛1(𝜷∗

1) − 𝐼𝑞+1

}
𝜷01 +

1√
𝑛
Φ(�̂�𝑜1)�̇�𝑛1(𝜷01) = Π1 +Π2,

with Π1 =
√
𝑛

{
Φ(�̂�𝑜1)𝐻𝑛1(𝜷∗

1) − 𝐼𝑞+1

}
𝜷01 and Π2 =

1√
𝑛
Φ(�̂�𝑜1)�̇�𝑛1(𝜷01).

Furthermore, it follows from Woodbury matrix identity and Condition (C5) that

‖Π1‖ = 2𝜆𝑛√
𝑛
‖𝐻𝑛1(𝜷∗

1)
−1𝐷1(�̂�

𝑜

1)Φ(�̂�𝑜1)𝐻𝑛1(𝜷∗
1)𝜷01‖ ≤ 2𝜆𝑛√

𝑛
𝐾2

0‖𝜷01‖ = 𝑜𝑝(1).
11

Similarly using Woodbury matrix identity to Π2 , we have
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‖Π2‖ = 1√
𝑛
𝐻𝑛1(𝜷∗

1)
−1∕2
{
𝐼𝑞+1 −

2𝜆𝑛
𝑛
𝐷1(�̂�

𝑜

1)Φ(�̂�𝑜1)
}
�̇�𝑛1(𝜷01)

= 1√
𝑛
𝐻𝑛1(𝜷∗

1)
−1∕2 �̇�𝑛1(𝜷01) −

2𝜆𝑛√
𝑛
𝐻𝑛1(𝜷∗

1)
−1∕2𝐷1(�̂�

𝑜

1)Φ(�̂�𝑜1)
1
𝑛
�̇�𝑛1(𝜷01)

= 1√
𝑛
𝐻𝑛1(𝜷∗

1)
−1∕2 �̇�𝑛1(𝜷01) + 𝑜𝑝(1)→𝑁𝑞+1(0, 𝐼𝑞+1).

Therefore, 
√
𝑛(�̂�𝑜1 − 𝜷01) →𝑁𝑞+1(0, 𝐻𝑛1(𝜷∗

1)
−1). □

Proof of the theorem. According to the definition of 𝑔(𝜷), 𝑔(𝜷) = (𝑔1(𝜷)𝑇 , 𝑔2(𝜷)𝑇 )𝑇 is the solution of �̇�𝑛(𝜽) = 0, that is, 𝑔1(𝜷) is the 
solution of �̇�𝑛1(𝜽1) = 0 and 𝑔2(𝜷) is the solution of �̇�𝑛2(𝜽2) = 0.

(i) According to the definitions of the BAR estimator �̂� and Lemma 1 and Lemma 2(i), we have that �̂�2 = lim𝑘→∞ 𝑔2(�̂�
(𝑘)) = 0

holds with the probability tending to 1.

(ii) Since �̂�1 = lim𝑘→∞ 𝑔1(�̂�
(𝑘)), next we should show that 𝑃 (lim𝑘→∞ ‖𝑔1(�̂�(𝑘)) − �̂�

𝑜

1‖ = 0) → 1, where �̂�𝑜1 is the unique fixed point 
of 𝑓 (𝜷1) defined in Lemma 3.

From (i) we can see that lim𝜷2→0 𝑔2(𝜷; 𝜷1, 𝜷2) = 0, and thus lim𝜷2→0 𝑔1(𝜷; 𝜷1, 𝜷2) = 𝑓 (𝜷1) holds. Also, for any �̂�(𝑘)
2 , 𝑔(𝜷; 𝜷1, �̂�

(𝑘)
2 )

is a mapping of 𝜷1, and with 𝑘 →∞ and probability tending to one, we have that

𝜂𝑘 ≡ sup
𝑔1(𝜷)∈[1∕𝐾0 ,𝐾0]𝑞+1

‖‖‖𝑓 (𝜷1) − 𝑔1(𝜷;𝜷1, �̂�
(𝑘)
2 )‖‖‖→ 0. (𝐴12)

On the other hand, since 𝑓 (⋅) is a contraction mapping, there exists a constant 𝐶1 > 1 such that

‖𝑓 (�̂�(𝑘)
1 ) − �̂�

𝑜

1‖ = ‖𝑓 (�̂�(𝑘)
1 ) − 𝑓 (�̂�𝑜1)‖ ≤ 1

𝐶1
‖�̂�(𝑘)

1 − �̂�
𝑜

1‖. (𝐴13)

Let ℎ𝑘 = ‖�̂�(𝑘)
1 − �̂�

𝑜

1‖, then it follows from (𝐴12) and (𝐴13) that

ℎ𝑘+1 = ‖�̂�(𝑘+1)
1 − �̂�

𝑜

1‖ ≤ ‖𝑔1(�̂�(𝑘)) − 𝑓 (�̂�(𝑘)
1 )‖+ ‖𝑓 (�̂�(𝑘)

1 ) − �̂�
𝑜

1‖
≤ 𝜂𝑘 +

1
𝐶1

ℎ𝑘.

From (𝐴12), for any 𝜖 ≥ 0, there exists 𝑁 > 0 such that when 𝑘 >𝑁 , 0 ≤ 𝜂𝑘 < 𝜖.

Employing some recursive calculation, we have ℎ𝑘 → 0 as 𝑘 →∞. Hence, with probability tending to one, we have ‖�̂�(𝑘)
1 − �̂�

𝑜

1‖ →
0 as 𝑘 →∞. Since �̂�1 ≡ lim𝑘→∞ �̂�

(𝑘)
1 , it follows from the uniqueness of the fixed-point that 𝑃 (�̂�1 = �̂�

𝑜

1) → 1, 𝑘 →∞.

(iii) The asymptotic normality of �̂�1 follows from part (ii) of Lemma 3. □
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